131 research outputs found

    A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope's Wide Field Camera 3 Near-IR Detector and Applications to Transiting Exoplanets and Brown Dwarfs

    Full text link
    The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy and brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits "to help the telescope reach a thermal equilibrium". We show that the ramp effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different datasets, and we provide best-fit values. Our model is tested with more than 120 orbits (40\sim40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit need no longer be discarded. Near IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model, if similar systematic profiles are observed.Comment: 16 pages, 13 figures, accepted to Astronomical Journa

    Cloud Atlas: Weak Color Modulations Due to Rotation in the Planetary-mass Companion GU Psc b and 11 Other Brown Dwarfs

    Get PDF
    Among the greatest challenges in understanding ultracool brown dwarf and exoplanet atmospheres is the evolution of cloud structure as a function of temperature and gravity. In this study, we present the rotational modulations of GU Psc b—a rare mid-T spectral type planetary-mass companion at the end of the L/T spectral type transition. Based on the Hubble Space Telescope/WFC3 1.1–1.67 μm time-series spectra, we observe a quasi-sinusoidal light curve with a peak-to-trough flux variation of 2.7% and a minimum period of 8 h. The rotation-modulated spectral variations are weakly wavelength-dependent, or largely gray between 1.1 and 1.67 μm. The gray modulations indicate that heterogeneous clouds are present in the photosphere of this low-gravity mid-T dwarf. We place the color and brightness variations of GU Psc b in the context of rotational modulations reported for mid-L to late-T dwarfs. Based on these observations, we report a tentative trend: mid-to-late T dwarfs become slightly redder in J − H color with increasing J-band brightness, while L dwarfs become slightly bluer with increasing brightness. If this trend is verified with more T-dwarf samples, it suggests that in addition to the mostly gray modulations, there is a second-order spectral-type dependence on the nature of rotational modulations

    Cloud Atlas: High-precision HST/WFC3/IR Time-resolved Observations of Directly Imaged Exoplanet HD 106906b

    Get PDF
    HD 106906b is an ~11M_(Jup), ~15 Myr old directly imaged exoplanet orbiting at an extremely large distance from its host star. The wide separation (7 11) between HD 106906b and its host star greatly reduces the difficulty in direct-imaging observations, making it one of the most favorable directly imaged exoplanets for detailed characterization. In this paper, we present HST/WFC3/IR time-resolved observations of HD 106906b in the F127M, F139M, and F153M bands. We have achieved ~1% precision in the lightcurves in all three bands. The F127M lightcurve demonstrates marginally detectable (2.7σ significance) variability with a best-fitting period of 4 hr, while the lightcurves in the other two bands are consistent with flat lines. We construct primary-subtracted deep images and use these images to exclude additional companions to HD 106906 that are more massive than 4 M_(Jup) and locate at projected distances of more than ~500 au. We measure the astrometry of HD 106906b in two HST/WFC3 epochs and achieve precisions better than 2.5 mas. The position angle and separation measurements do not deviate from those in the 2004 HST/ACS/HRC images for more than 1σ uncertainty. We provide the HST/WFC3 astrometric results for 25 background stars that can be used as reference sources in future precision astrometry studies. Our observations also provide the first 1.4 μm water band photometric measurement for HD 106906b. HD 106906b's spectral energy distribution and the best-fitting BT-Settl model have an inconsistency in the 1.4 μm water absorption band, which highlights the challenges in modeling atmospheres of young planetary-mass objects

    Cloud Atlas: Rotational Spectral Modulations and potential Sulfide Clouds in the Planetary-mass, Late T-type Companion Ross 458C

    Get PDF
    Measurements of photometric variability at different wavelengths provide insights into the vertical cloud structure of brown dwarfs and planetary-mass objects. In seven Hubble Space Telescope consecutive orbits, spanning \sim10 h of observing time}, we obtained time-resolved spectroscopy of the planetary-mass T8-dwarf Ross 458C using the near-infrared Wide Field Camera 3. We found spectrophotometric variability with a peak-to-peak signal of 2.62±\pm0.02 % (in the 1.10-1.60~μ\mum white light curve). Using three different methods, we estimated a rotational period of 6.75±\pm1.58~h for the white light curve, and similar periods for narrow JJ- and HH- band light curves. Sine wave fits to the narrow JJ- and HH-band light curves suggest a tentative phase shift between the light curves with wavelength when we allow different periods between both light curves. If confirmed, this phase shift may be similar to the phase shift detected earlier for the T6.5 spectral type 2MASS J22282889-310262. We find that, in contrast with 2M2228, the variability of Ross~458C shows evidence for a {color trend} within the narrow JJ-band, but gray variations in the narrow HH-band. The spectral time-resolved variability of Ross 458C might be potentially due to heterogeneous sulfide clouds in the atmosphere of the object. Our discovery extends the study of spectral modulations of condensate clouds to the coolest T dwarfs, planetary-mass companions.Comment: Accepted in ApJ

    Cloud Atlas: High-Contrast Time-Resolved Observations of Planetary-Mass Companions

    Get PDF
    Directly-imaged planetary-mass companions offer unique opportunities in atmospheric studies of exoplanets. They share characteristics of both brown dwarfs and transiting exoplanets, therefore, are critical for connecting atmospheric characterizations for these objects. Rotational phase mapping is a powerful technique to constrain the condensate cloud properties in ultra-cool atmospheres. Applying this technique to directly-imaged planetary-mass companions will be extremely valuable for constraining cloud models in low mass and surface gravity atmospheres and for determining the rotation rate and angular momentum of substellar companions. Here, we present Hubble Space Telescope Wide Field Camera 3 near-infrared time-resolved photometry for three planetary-mass companions, AB Pic B, 2M0122B, and 2M1207b. Using two-roll differential imaging and hybrid point spread function modeling, we achieve sub-percent photometric precision for all three observations. We find tentative modulations (< ⁣ ⁣2σ<\!\!2\sigma) for AB Pic B and 2M0122B but cannot reach conclusive results on 2M1207b due to strong systematics. The relatively low significance of the modulation measurements cannot rule out the hypothesis that these planetary-mass companions have the same vertical cloud structures as brown dwarfs. Our rotation rate measurements, combined with archival period measurements of planetary-mass companions and brown dwarfs do not support a universal mass-rotation relation. The high precision of our observations and the high occurrence rates of variable low-surface gravity objects encourage high-contrast time-resolved observations with the James Webb Space Telescope.Comment: Accepted for publication in AAS Journa

    Cloud Atlas: Discovery of Rotational Spectral Modulations in a Low-mass, L-type Brown Dwarf Companion to a Star

    Get PDF
    Observations of rotational modulations of brown dwarfs and giant exoplanets allow the characterization of condensate cloud properties. As of now rotational spectral modulations have only been seen in three L-type brown dwarfs. We report here the discovery of rotational spectral modulations in LP261-75B, an L6-type intermediate surface gravity companion to an M4.5 star. As a part of the Cloud Atlas Treasury program we acquired time-resolved Wide Field Camera 3 grism spectroscopy (1.1--1.69~μ\mum) of LP261-75B. We find gray spectral variations with the relative amplitude displaying only a weak wavelength dependence and no evidence for lower-amplitude modulations in the 1.4~μ\mum water band than in the adjacent continuum. The likely rotational modulation period is 4.78±\pm0.95 h, although the rotational phase is not well sampled. The minimum relative amplitude in the white light curve measured over the whole wavelength range is 2.41±\pm0.14\%. We report an unusual light curve with seemingly three peaks approximately evenly distributed in rotational phase. The spectral modulations suggests that the upper atmosphere cloud properties in {LP261-75B} are similar to two other mid-L dwarfs of typical infrared colors, but differ from that of the extremely red L-dwarf WISE0047

    Cloud Atlas: Unraveling the vertical cloud structure with the time-series spectrophotometry of an unusually red brown dwarf

    Get PDF
    Rotational modulations of emission spectra in brown dwarf and exoplanet atmospheres show that clouds are often distributed non-uniformly in these ultracool atmospheres. The spatial heterogeneity in cloud distribution demonstrates the impact of atmospheric dynamics on cloud formation and evolution. In this study, we update the Hubble Space Telescope (HST) time-series data analysis of the previously reported rotational modulations of WISEP J004701+680352 -- an unusually red late-L brown dwarf with a spectrum similar to that of the directly imaged planet HR8799e. We construct a self-consistent spatially heterogeneous cloud model to explain the Hubble Space Telescope and the Spitzer time-series observations, as well as the time-averaged spectra of WISE0047. In the heterogeneous cloud model, a cloud thickness variation of around one pressure scale height explains the wavelength dependence in the HST near-IR spectral variability. By including disequilibrium CO/CH4CH_4 chemistry, our models also reproduce the redder JKsJ-K_{\rm s} color of WISE0047 compared to that of field brown dwarfs. We discuss the impact of vertical cloud structure on atmospheric profile and estimate the minimum eddy diffusivity coefficient for other objects with redder colors. Our data analysis and forward modeling results demonstrate that time-series spectrophotometry with a broad wavelength coverage is a powerful tool for constraining heterogeneous atmospheric structure.Comment: accepted for publication in The Astrophysical Journa

    Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    Get PDF
    Time-resolved observations of brown dwarfs' rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared G141 taken in six consecutive orbits observations of HNPeg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1 to 1.7 micron broadband light curve has the amplitude of and period of hour. The modulation amplitude has no detectable wavelength dependence except in the 1.4 micron water absorption band, indicating that the characteristic condensate particle sizes are large (greater than 1 micron). We detect significantly (4.4 sigma) lower modulation amplitude in the 1.4 micron water absorption band, and find that HN Peg B's spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3
    corecore